Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add filters

Document Type
Year range
1.
Chinese Journal of Experimental Traditional Medical Formulae ; 27(2):66-73, 2021.
Article in Chinese | EMBASE | ID: covidwho-2306522

ABSTRACT

Objective:To determine the therapeutic effect of in vitro cultivation of bezoar on a mouse model adding disease with syndrome of coronavirus pneumonia with Yidu Xifei syndrome. Method: BALB/c mice were randomly divided into six groups according to their weight grade:normal group,HCoV-229E infection group,cold and damp group,a mouse model combining disease with syndrome of coronavirus pneumonia with Yidu Xifei syndrome,and high and low dose group of in vitro cultivation of bezoar. The combination model of human coronavirus pneumonia with Yidu Xifei syndrome mice was established by the method of cold dampness condition stimulation+coronavirus HCoV-229E infection. In vitro cultivation of bezoar (0.128,0.064 g.kg-1 )was administrated by gavage for 3 days from the day of infection. The observation indexes included:general state observation of mice,inhibition rate of lung index and lung index of mice. Real-time fluorescence quantitative polymerase chain reaction(Real-time PCR)was used to detect the viral load in the lung tissues of mice. Serum levels of motilin(MTL),gastrin(GAS),and cytokines interleukin(IL)-10,IL-6, tumor necrosis factor-alpha(TNF-alpha)and interferon-gamma(IFN-gamma)in lung tissue of mice were determined by enzyme-linked immunosorbent assay(ELISA). The percentages of CD4+ T lymphocytes,CD8+ T lymphocytes and B lymphocytes in the blood of mice were determined by flow cytometry. Result:The high and low dose group of in vitro cultivation of bezoar can significantly improve the general condition of model mice. Compared with blank group, model group mice lung index increased significantly(P<0.01), nucleic acids significantly increased expression of lung tissue in mice(P<0.01),significantly higher serum MTL content in mice,GAS content significantly decreased(P<0.05,P<0.01),lung tissue cells in the immune factor TNF-alpha,IL-10 and IL-6 were significantly increased(P<0.01),peripheral blood lymphocyte CD4+ T cells in mice,The percentages of CD8+ T cells and B cells were significantly decreased(P<0.01). Compared with model group, in vitro cultivation bezoar mice lung index of high and low dose group were significantly lower(P<0.01),the lung tissue of mice express nucleic acid decreased significantly(P<0.01),MTL content decreased significantly(P< 0.01),the lung tissue of mice in the IL-6,IL-10,the TNF-alpha,IFN-gamma levels were significantly lower(P<0.01), in vitro cultivation bezoar high dose group can significantly increase the CD4+ T cell percentage(P<0.05),in vitro cultivation bezoar can to a certain extent reduce model mice lung inflammatory exudation,pulmonary interstitial edema,as well as blood stasis symptoms. Conclusion:In vitro cultivation of bezoar has a significant therapeutic effect on a mice model adding disease with syndrome of coronavirus pneumonia with Yidu Xifei syndrome. It can be treated by reducing the lung index of the model mice,improving the pathological damage of the lung tissue,adjusting the immune effective and inhibiting the clearing of inflammatory factors,and to provide a laboratory basis for clinical medication.Copyright © 2021, China Academy of Chinese Medical Sciences Institute of Chinese Materia Medica. All rights reserved.

2.
Yaoxue Xuebao ; 58(1):39-51, 2023.
Article in Chinese | Scopus | ID: covidwho-2269131

ABSTRACT

Since the outbreak of the novel coronavirus (SARS-CoV-2) disease COVID-19 (also known as 2019-nCoV) caused by SARS-CoV-2 in the end of 2019, it has spread rapidly in worldwide. Besides developing effective vaccines, it is urgent to develop safe and effective anti-SARS-CoV-2 drugs to fight this disease. Paxlovid, molnupiravir, sotrovimab and bebtelovimab are urgently authorized by FDA have been proved to be effective against Omicron. This manuscript mainly reviews the recent progress of effective inhibitors against the virus in the world, including receptor inhibitors, antibodies, natural product inhibitors, synthetic inhibitors and broad-spectrum antiviral drugs that are effective against other RNA viruses. © 2023, Chinese Pharmaceutical Association. All rights reserved.

3.
Chinese Journal of Experimental Traditional Medical Formulae ; 27(2):66-73, 2021.
Article in Chinese | EMBASE | ID: covidwho-2288788

ABSTRACT

Objective:To determine the therapeutic effect of in vitro cultivation of bezoar on a mouse model adding disease with syndrome of coronavirus pneumonia with Yidu Xifei syndrome. Method: BALB/c mice were randomly divided into six groups according to their weight grade:normal group,HCoV-229E infection group,cold and damp group,a mouse model combining disease with syndrome of coronavirus pneumonia with Yidu Xifei syndrome,and high and low dose group of in vitro cultivation of bezoar. The combination model of human coronavirus pneumonia with Yidu Xifei syndrome mice was established by the method of cold dampness condition stimulation+coronavirus HCoV-229E infection. In vitro cultivation of bezoar (0.128,0.064 g.kg-1 )was administrated by gavage for 3 days from the day of infection. The observation indexes included:general state observation of mice,inhibition rate of lung index and lung index of mice. Real-time fluorescence quantitative polymerase chain reaction(Real-time PCR)was used to detect the viral load in the lung tissues of mice. Serum levels of motilin(MTL),gastrin(GAS),and cytokines interleukin(IL)-10,IL-6, tumor necrosis factor-alpha(TNF-alpha)and interferon-gamma(IFN-gamma)in lung tissue of mice were determined by enzyme-linked immunosorbent assay(ELISA). The percentages of CD4+ T lymphocytes,CD8+ T lymphocytes and B lymphocytes in the blood of mice were determined by flow cytometry. Result:The high and low dose group of in vitro cultivation of bezoar can significantly improve the general condition of model mice. Compared with blank group, model group mice lung index increased significantly(P<0.01), nucleic acids significantly increased expression of lung tissue in mice(P<0.01),significantly higher serum MTL content in mice,GAS content significantly decreased(P<0.05,P<0.01),lung tissue cells in the immune factor TNF-alpha,IL-10 and IL-6 were significantly increased(P<0.01),peripheral blood lymphocyte CD4+ T cells in mice,The percentages of CD8+ T cells and B cells were significantly decreased(P<0.01). Compared with model group, in vitro cultivation bezoar mice lung index of high and low dose group were significantly lower(P<0.01),the lung tissue of mice express nucleic acid decreased significantly(P<0.01),MTL content decreased significantly(P< 0.01),the lung tissue of mice in the IL-6,IL-10,the TNF-alpha,IFN-gamma levels were significantly lower(P<0.01), in vitro cultivation bezoar high dose group can significantly increase the CD4+ T cell percentage(P<0.05),in vitro cultivation bezoar can to a certain extent reduce model mice lung inflammatory exudation,pulmonary interstitial edema,as well as blood stasis symptoms. Conclusion:In vitro cultivation of bezoar has a significant therapeutic effect on a mice model adding disease with syndrome of coronavirus pneumonia with Yidu Xifei syndrome. It can be treated by reducing the lung index of the model mice,improving the pathological damage of the lung tissue,adjusting the immune effective and inhibiting the clearing of inflammatory factors,and to provide a laboratory basis for clinical medication.Copyright © 2021, China Academy of Chinese Medical Sciences Institute of Chinese Materia Medica. All rights reserved.

4.
Yaoxue Xuebao ; 58(1):39-51, 2023.
Article in Chinese | EMBASE | ID: covidwho-2242735

ABSTRACT

Since the outbreak of the novel coronavirus (SARS-CoV-2) disease COVID-19 (also known as 2019-nCoV) caused by SARS-CoV-2 in the end of 2019, it has spread rapidly in worldwide. Besides developing effective vaccines, it is urgent to develop safe and effective anti-SARS-CoV-2 drugs to fight this disease. Paxlovid, molnupiravir, sotrovimab and bebtelovimab are urgently authorized by FDA have been proved to be effective against Omicron. This manuscript mainly reviews the recent progress of effective inhibitors against the virus in the world, including receptor inhibitors, antibodies, natural product inhibitors, synthetic inhibitors and broad-spectrum antiviral drugs that are effective against other RNA viruses.

5.
Yaoxue Xuebao ; 58(1):39-51, 2023.
Article in English | Scopus | ID: covidwho-2242734

ABSTRACT

Since the outbreak of the novel coronavirus (SARS-CoV-2) disease COVID-19 (also known as 2019-nCoV) caused by SARS-CoV-2 in the end of 2019, it has spread rapidly in worldwide. Besides developing effective vaccines, it is urgent to develop safe and effective anti-SARS-CoV-2 drugs to fight this disease. Paxlovid, molnupiravir, sotrovimab and bebtelovimab are urgently authorized by FDA have been proved to be effective against Omicron. This manuscript mainly reviews the recent progress of effective inhibitors against the virus in the world, including receptor inhibitors, antibodies, natural product inhibitors, synthetic inhibitors and broad-spectrum antiviral drugs that are effective against other RNA viruses. © 2023, Chinese Pharmaceutical Association. All rights reserved.

6.
Yaoxue Xuebao ; 58(1):39-51, 2023.
Article in Chinese | Scopus | ID: covidwho-2232554

ABSTRACT

Since the outbreak of the novel coronavirus (SARS-CoV-2) disease COVID-19 (also known as 2019-nCoV) caused by SARS-CoV-2 in the end of 2019, it has spread rapidly in worldwide. Besides developing effective vaccines, it is urgent to develop safe and effective anti-SARS-CoV-2 drugs to fight this disease. Paxlovid, molnupiravir, sotrovimab and bebtelovimab are urgently authorized by FDA have been proved to be effective against Omicron. This manuscript mainly reviews the recent progress of effective inhibitors against the virus in the world, including receptor inhibitors, antibodies, natural product inhibitors, synthetic inhibitors and broad-spectrum antiviral drugs that are effective against other RNA viruses. © 2023, Chinese Pharmaceutical Association. All rights reserved.

SELECTION OF CITATIONS
SEARCH DETAIL